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a State Key Laboratory of Antenna and Microwave Technology, Xidian University, Xi’an, China
b State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China

Received 16 February 2006; received in revised form 4 July 2006; accepted 6 July 2006
Available online 22 August 2006
Abstract

An efficient domain decomposition method (DDM) based on the partial basic solution vectors (PBSV) is presented for
the electromagnetic scattering analysis of electrically large two-dimensional objects. The original computation domain is
partitioned into nonoverlapping subdomains. The PBSV of each subdomain are evaluated independently. Then the field on
the interfaces between subdomains can easily be obtained by an iterative vector summation procedure, and the final solu-
tion on each subdomain is solved independently and efficiently. To improve the algorithm further, two techniques, expand-
ing the PBSV by roof-top basis functions and an under relaxed iteration method, are also studied. Compared with the
traditional DDM, the proposed method can greatly reduce the computational complexity and the memory requirement;
moreover, it can be implemented totally independently on both sequential and parallel computational platform, which
is distinct from the others. The validity of this algorithm is verified by numerical examples.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Because the electromagnetic scattering analysis of electrically large targets and geometrically complex struc-
tures has been playing an increasingly important role in electromagnetic field theory and practicable applica-
tions, the fast and rigorous methods for solving such problems are needed pressingly. Many numerical
methods have been reported on this topic. As one of the most popular techniques, the finite element method
(FEM) is well suited for problems involving inhomogeneous, arbitrary shaped objects. When FEM is used to
solve unbounded problems, as is the case of electromagnetic scattering, the infinite space must be truncated
using artificial boundary conditions to limit the size of the computational domain.
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Two major classes of boundary conditions have been developed and used extensively for FEM analysis of
scattering problems [1]. The first class of boundary conditions is derived from the boundary integral equations
[2,3]. These boundary conditions are precise and can be applied directly at the surface of the scatterer, which
reduce the domain of calculation to a minimum. However, the coefficient matrix corresponding to such
boundary conditions will be a partly full, partly sparse matrix, which is expensive to be stored and solved.
The second class of boundary conditions is often called local boundary conditions, such as absorbing bound-
ary conditions (ABCs) [4–6] and perfectly matched layers [7–9]. Since these boundary conditions relate the
field at one point on the artificial boundary only to the field at its neighboring points, the corresponding coef-
ficient matrix is always a sparse matrix, which can be stored and solved efficiently. However, the absorbing
boundary must be placed enough far away from the surface of the scatterer to minimize the nonphysical
reflected waves. Thus, for electrically large problems, this method will yield a huge coefficient matrix that
may become prohibitive for today’s computer platform.

To promote the computational efficiency, many studies have been reported. Between them, the domain
decomposition method (DDM) is especially appealing [10–27,33]. Unlike other methods, the DDM does
not deal with the whole computational domain directly, but divide it into several subdomains. Each subdo-
main is solved independently, and the contiguous subdomains are coupled through specific interface boundary
conditions to guarantee the unique solution. Since the DDM can reduce the originally larger problem to sev-
eral smaller problems, it greatly decreases the memory requirement; moreover, it is also well suited for numer-
ical implementation on parallel computers. An efficient domain decomposition technique for the method of
moments (MOM) was reported in [10]. A parallel technique for two-dimensional (2-D) FEM analysis was
introduced in [11,12]. This algorithm employed the tangential field continuity conditions to exchange informa-
tion between the subdomains. In mechanical engineering community, a finite element tearing and intercon-
necting method (FETI) was presented by Farhat et al. in [13] to focus on the parallel computing, which
was based on the hybrid variational principle with the help of Lagrange multipliers. Although the FETI have
been extended to electromagnetics problems [15,16], it might cause ‘‘floating subdomains’’. To avoid the short-
coming, a modified FETI algorithm FETI-H was developed for Helmholtz problems in [14] by introducing the
interface matrix. Recently, A fast DP-FETI algorithm was presented in [17–21,33], which was highly efficient
for problems with geometric repetitions, such as photonic and electromagnetic band gap structures. In [22],
Després presented an iterative algorithm and a Robin type transmission condition, i.e., the Després DDM,
for the 2-D Helmholtz equation. Later in [23], Després extended his method to Maxwell’s equations. Stupfel
used the Després method to analyze electromagnetic scattering problems by an ‘‘onion-like’’ partition scheme
of the computational domain [24,25]. Hong et al. introduced the Després DDM to finite difference frequency
domain (FDFD) method and presented a more efficient partition scheme [26]. In [27], a mixed algorithm of the
Després DDM and the measured equation of invariance (MEI) [28] was developed for the 2-D electromagnetic
scattering problems.

The major drawback of the conventional DDM is that one has to repeatedly solve the matrix equation on
each subdomain and enforce the field continuity by using transmission conditions or Lagrange multipliers
until the desired accuracy is achieved. Hence, the efficiency is heavily dependent on both the computational
complexity of each subdomain and the iterative method for communication between subdomains. As men-
tioned above, for electrically large problems, the DDM can greatly reduce the memory requirement. However,
in practice, it can not decrease the CPU time significantly [27], especially on a common PC. For example, sup-
pose the original computation domain consists of N unknowns and is equally decomposed into m subdomains;
then the CPU time spent by the DDM can be estimated as n/m Æ O(N), where n is the total number of iterations
to arrive at the desired accuracy. Unfortunately, n is often many times larger than m, and thus the computing
time of the DDM might be considerably longer than that of the conventional methods.

In this paper, we present a novel DDM algorithm based on our previous work [27] for the analysis of elec-
tromagnetic scattering problems of 2-D electrically large objects by introducing the partial basic solution vec-
tors (PBSV) of the matrix equations, and we denote it by ‘‘partial basic solution vectors based domain
decomposition method (PBSV-DDM)’’, which can be viewed as a combination of the Després DDM and
the method of moments. This paper is organized as follows. In Section 2, the Despré DDM is reviewed briefly.
The basic theory of PBSV-DDM are described in Section 3.1. To improve the efficiency further, two tech-
niques, expanding the PBSV by roof-top basis functions and an under relaxed iteration method, are studied
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in Sections 3.2 and 3.3, respectively. Finally, some numerical examples are provided to demonstrate the new
method in Section 4.

2. Formulation for the Despré DDM

2.1. Finite element method

Consider the electromagnetic scattering problem of an arbitrary shaped, homogeneous or inhomogeneous
2-D object illuminated by a time harmonic plane wave, as illustrated in Fig. 1. Let X and C be the computa-
tional region and boundary, respectively. The total field satisfies [1]
o
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ox
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� �
þ b/ ¼ 0; ð1Þ
where
/ ¼ Ez; a ¼ 1

lr

; b ¼ k2
0er;
for Ez polarization, and
/ ¼ H z; a ¼ 1

er

; b ¼ k2
0lr;
for Hz polarization. er and lr are the relative permittivity and permeability, respectively. k0 is the wave number
of free space.

The above problem can be simulated numerically by using the FEM [1], which yields the following matrix
equation:
½A�fug ¼ ff g; ð2Þ

where [A] is the coefficient matrix, {u} is the unknowns vector that consists of the field at all nodes, and {f} is
the excitation vector corresponding to the incident wave.

2.2. Després domain decomposition method

Although the matrix [A] in (2) is highly sparse, it might be too huge to be operated when electrically large
problems encountered. Let us consider again the model described in (1) and Fig. 1, but now deal with it by the
Després DDM [22]. The original domain X is divided into s nonoverlapping subdomains Xp (p = 1, 2, . . ., s), as
shown in Fig. 2, where Cp = Xp \ C is the original boundary of Xp coinciding with C, and Cp,q = Xp \ Xq, plot-
ted with the dashed line, is the interface between two contiguous subdomains Xp and Xq. Thus, the original
scattering problem defined in (1) is decomposed into s smaller problems, and on the subdomain Xp (p = 1,
2, . . ., s) it can be expressed by an iterative algorithm:
Γ

Ω
scatterer

Incident Wave

Fig. 1. Electromagnetic scattering by a 2-D object.



Fig. 2. Illustration of partitioned computational domain.
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where /nþ1
p is the total field in Xp at the (n + 1)th iteration. ap and bp are the corresponding medium param-

eters of Xp.
The transmission condition in (3), developed first by Després [22], is defined as follows:
onp þ jkp

� �
/nþ1

p ¼ �onq þ jkq

� �
/n

q; ð4Þ
where np and nq are the outward normals from Xp and Xq, respectively. /n
q is the total field in Xq at the nth

iteration. kp and kq are the wave numbers of Xp and Xq, respectively. j is the imaginary unit.
The transmission condition (4) is the key ingredient of the Després DDM, because only by it each subdo-

main can exchange data with its neighbors. The convergence of (4) for electromagnetic scattering problems
had been proved rigorously in [22,33] and verified numerically in [24,26,27].

Following FEM, (3) can be written as
½Ap� unþ1
p

n o
¼ f n

p

n o
; ð5Þ
where [Ap] is the coefficient matrix of the subdomain Xp. unþ1
p

n o
is the unknowns vector of Xp. f n

p

n o
is the

excitation vector of Xp.
The Després DDM can be outlined in the following:

Step 1. Give initial values to all subdomains, usually zeros.
Step 2. Loop on all subdomains: solve the field on each subdomain by (5), and then update the excitation

vectors by (4) for its immediate neighbors.
Step 3. Stop loop if the prescribed accuracy is achieved, otherwise go back to step 2.

The major disadvantage of the Després DDM is one has to repeatedly solve the matrix equation on each
subdomain and propagate the approximate solution to all subdomains until convergence. Because of the slow
rate of convergence, the algorithm is not very efficient.

3. The PBSV-DDM

3.1. Basic theory of PBSV-DDM

As can be seen from (5), the coefficient matrix [Ap] remains the same during iterations; however, the exci-

tation vector f n
p

n o
has to be updated. Because f n

p

n o
is determined by both the incident wave and the trans-

mission condition, in each iteration, once the field on Xp’s neighbors are updated, the right-hand side of (4)
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should also be updated, which causes f n
p

n o
to take on new values. We can find the positions of the refreshed

components in f n
p

n o
just correspond to the indexes of the interface nodes on Cp,q (q = 1, 2, . . ., s, and q 6¼ p).

For the sake of simplicity, let the original computation domain be partitioned into two subdomains X1 and
X2, with the interface C1,2, as shown in Fig. 3. Suppose there are N nodes on X1 and M nodes on C1,2. The
linear system of equations for subdomain X1 at the (n + 1)th iteration step takes the form:
½A1� unþ1
1 g ¼ ff n

1

� �
; ð6Þ
where [A1] is the coefficient matrix of the subdomain X1, unþ1
1

� �
is the unknowns vector on X1 at the (n + 1)th

iteration step, and f n
1

� �
is the excitation vector on X1.

As mentioned above, f n
1

� �
is determined by the incident field and the field on C1,2. Therefore, by using the

concept ‘‘basis function’’ from MOM [29], f n
1

� �
can be expanded by a set of standard orthogonal basic vec-

tors, i.e., pulse basis functions:
f n
1

� �
¼ ainc

1

� �
þ
XM

m¼1

bn
1mfamg; ð7Þ
where fainc
1 g is introduced by the incident wave and independent of iterations. The expansion coefficient bn

1m is
computed by the right-hand side of (4). {am} is a N-dimensional basic vector associated with the mth node on
the interface C1,2 and can be written as
famg ¼ ½0 � � � 0 1 0 � � � 0�T; ð8Þ

where the position of element ‘‘1’’ corresponds to the node index of the mth node on the interface C1,2 in sub-
domain X1.

Substituting (7) into (6), we can rewrite the equation as follows:
½A1� unþ1
1

� �
¼ ainc

1

� �
sþ

XM

m¼1

bn
1mfamg: ð9Þ
Eq. (9) can be split into (M + 1) matrix equations:
½A1�fw1mg ¼ famg m ¼ 1; 2; . . . ;M

½A1� winc
1

� �
¼ ainc

1

� �
;

�
ð10Þ
where {w1m} and winc
1

� �
are the solutions corresponding to {am} and fainc

1 g, respectively.

From {w1m} and winc
1

� �
, selecting the elements associated with all nodes on C1,2, we can get a set of vectors

{m1m}(m = 1, 2, . . .,M + 1). Among them, vector {m1m}(m = 1, 2, . . .,M) corresponds to the basic vector
{am}(m = 1, 2, . . .,M), and {m1(M+1)} corresponds to fainc

1 g. Since the dimension of {m1m}(m = 1, 2, . . .
M + 1) is far less than that of f n

1

� �
, i.e., M� N, we denote {m1m}(m = 1, 2, . . .,M + 1) by the partial basic

solution vectors (PBSV). Then, we can release the memory occupied by [A1], since it will not be used any
longer. Similarly, the PBSV of subdomain X2 can be determined.

Once the PBSV of both subdomains are obtained, it is unnecessary to solve the matrix equations any
more, because the field on the interface nodes can easily be computed by a linear summation of the PBSV.
In subdomain X1, the field on C1,2 at the (n + 1)th iteration step, represented by fxnþ1

1 g, are calculated as
follows:
Fig. 3. Two subdomains.
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xnþ1
1

� �
¼ fm1ðMþ1Þg þ

XM

m¼1

bn
1mfm1mg: ð11Þ
Then, substituting xnþ1
1

� �
into the right-hand side of (4), we can get the expansion coefficient bn

2m for X2 and the
field on C1,2 at the (n + 2)th iteration step, denoted by fxnþ2

2 g, as shown below:
xnþ2
2

� �
¼ fm2ðMþ1Þg þ

XM

m¼1

bn
2mfm2mg: ð12Þ
Where {m2m}, m = 1, 2, . . ., (M + 1) is the PBSV on X2.
Therefore, the method can be summarized in the following steps:

Step 1. Compute the PBSV of all subdomains one by one. When one subdomain is tackled, the others have
no contributions.

Step 2. Give initial value to the expansion coefficients, usually zeros.
Step 3. Loop on all subdomains: according to (11), evaluate the field on the interface nodes of each subdo-

main, and then update the expansion coefficients of its neighbors.
Step 4. Terminate iteration if the desired accuracy is achieved, otherwise go back to step 3.
Step 5. Calculate the final solution on each subdomain.

We refer to this method as partial basic solution vectors based domain decomposition method (PBSV-
DDM). It is clear that the PBSV-DDM only deal with one subdomain at a time and does not need to exchange
data before the step 2, which means the method can not only reduce memory requirement, but also be carried
out in parallel even on a common PC, and this is the distinct advantage over other DDMs, such as Després
DDM, FETI and FETI-H.

3.2. Expanded by roof-top basis functions

The key of the proposed method is to compute the PBSV. The number of the PBSV equals the number of
the interface nodes, and thus the efficiency might significantly be degraded if there are many interface nodes.
To improve the algorithm further, we can interpolate the excitation vector ff n

1 g in (6) by a set of roof-top basis
functions, as illustrated in Fig. 4:
ff n
1 g ¼ f~ainc

1 g þ
X~M

m¼1

~bn
1mf~amg; ð13Þ
where ~ainc
1

� �
is introduced by the incident wave and independent of iterations. eM is the number of basis

functions on the interface C1,2. The expansion coefficient ~bn
1m is computed by the right-hand side of (4).

f~amg is the mth roof-top basis function. If f~amg steps five nodes, as shown in Fig. 5(a), it can be written
as
f~amg ¼ 0 � � � 0 1

2
1

1

2
0 � � � 0

	 
T

; ð14Þ
1

1 M

M

interface   interface node

Fig. 4. Expanded by roof-top basis functions.
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Fig. 5. Roof-top basis functions: (a) 5 nodes; (b) 7 nodes.
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where the position of element ‘‘1’’ corresponds to the node index of the central node of the basis function f~amg.
Similarly, if f~amg steps seven nodes, as depicted in Fig. 5(b), it becomes
~amf g ¼ 0 � � � 0 1

3

2

3
1

2

3

1

3
0 � � � 0

	 
T

: ð15Þ
Therefore, (10) reduces to
½A1� ~w1m

n o
¼ ~amf g m ¼ 1; 2; . . . ; ~M

½A1� ~winc
1

n o
¼ ~ainc

1

� �
;

8><>: ð16Þ
where ~w1m

n o
and ~winc

1

n o
are the solutions corresponding to f~amg and ~ainc

1

� �
, respectively.

In each subdomain, the matrix equations in (16) should be solved ð eM þ 1Þ times, whereas those in (10)
needs to be solved (M + 1) times. As can be seen from Figs. 4 and 5, if each basis function steps five nodes,eM is about 50% of M; if it steps seven nodes, eM approximates 33% of M. Hence, the efficiency can be
improved 2–3 times.

Note that the PBSV-DDM in (10) can be regarded as a simple case of the proposed method by interpolating
the excitation vector ff n

1 g in (6) with the pulse basis functions [29]. In fact, one may use other basis functions,
such as Chebyshev function, sinusoidal function in (13).

Let the new PBSV of subdomain X1 be denoted by f~m1mg and the field on the central nodes of the basis
functions f~amgðm ¼ 1; 2; . . . ; eM Þ be represented by f~xnþ1

1 g. Thus, we have the following equation:
~xnþ1
1

� �
¼ f~m1ð ~Mþ1Þg þ

X~M

m¼1

~bn
1mf~m1mg: ð17Þ
3.3. Under relaxed iteration method

Although the expense on the linear summation procedure in (17) may be almost negligible in contrast to
that of the PBSV computing in (16), in practice, (17) exhibits a quite slow rate of convergence. Inspired by
the work reported in [30], we construct an under relaxed version of iteration method to speed up the conver-
gent process of the linear summation of the PBSV, and (17) can be rewritten as
~xnþ1
1

� �
¼ ð1� dÞ ~m1ð ~Mþ1Þ

n o
þ
XeM
m¼1

~bn
1m ~m1mf g

0@ 1Aþ df~xn
1g; ð18Þ
where d is the relaxation parameter and should satisfy the restriction 0 6 d < 1. Usually, the optimal choice of
d cannot be known beforehand; however, in our experiment, for most 2-D scattering problems, the value
d 2 [0.1,0.2] appears to be a good choice.

4. Numerical result

In this section, we present some numerical examples to demonstrate the accuracy, efficiency, and capability
of the PBSV-DDM. All calculations were performed on a Pentium IV 3.4 GHz PC with 1 GB memory. The
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stopping criteria for the iterations is the maximum relative error should be less than 1.0 · 10�6. The relaxation
parameter is d = 0.15. We only give the numerical results computed by the PBSV-DDM with five-node roof-
top basis functions, since all results obtained by the PBSV-DDM are similar.

4.1. Scattering by a perfectly electrical conducting (PEC) circular cylinder

Let us consider the electromagnetic scattering by a PEC circular cylinder with the radius of 10k, where k is
the wavelength in free space. The second-order absorbing boundary is placed 1k away from the surface of the
cylinder. The mesh size is 0.05k. The incident angle of the plane wave is hinc = 180�. The whole computational
domain is partitioned into four subdomains along the circumference, as depicted in Fig. 6, where the bold dark
line denotes the interface between subdomains. The induced current on the surface of the cylinder is plotted in
Fig. 7 and compared with the analytic solution [31]. As can be seen, the agreement of the solutions is quite
good. The convergence of the iteration is shown in Fig. 8. Although there are some oscillations, the relative
error decays quite fast.
Fig. 6. Partition scheme of a PEC circular cylinder having a radius of 10k.
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Fig. 7. Surface current of a PEC circular cylinder with radius of 10k.



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

R
el

at
iv

e 
er

ro
r

Iteration count

 TM case
 TE case

Fig. 8. Convergence of the PBSV-DDM for solving a PEC circular cylinder having a radius of 10k.
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4.2. Scattering by electrically large cylinders

To demonstrate the advantage of the PBSV-DDM in solving electrically large problems, we have computed
the electromagnetic scattering of a PEC square cylinder of 1000k in perimeter illuminated by a plane wave
with the incident angle hinc = 180�. The mesh size is 0.05k, and there are 20 layers of meshes between the trun-
cated boundary and the surface of the cylinder. By using the PBSV-DDM, the computational domain is
divided into 24 subdomains along the cylinder circumference, and the computed bistatic RCS is shown in
Fig. 9.

Fig. 10 shows the induced surface current of a PEC circular cylinder having a radius of 10,000k illuminated
by a TM plane wave with the incident angle hinc = 180�. The truncated boundary is located at 1k away from
the cylinder surface. The mesh size is 0.05k. The computational domain is decomposed into 2000 subdomains.
This model requires 3.291 MB memory and 178.45 s computing time.

The efficiency of the PBSV-DDM is heavily dependent on the computational complexity of each subdo-
main, and strongly influenced by the partition scheme. If there are fewer subdomains, then it will take more
time to solve the matrix equation on one subdomain, otherwise, if the number of subdomains is much larger,
then it will take more time to calculate the PBSV. Therefore, an optimal partition scheme may exist for a given
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Fig. 9. Bistatic RCS of a PEC square cylinder with perimeter of 1000k.
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Fig. 10. Surface current of a PEC circular cylinder having a radius of 10,000k.
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problem. Let us consider the scattering problem of a PEC circular cylinder having the radius of 100k. The
original domain is decomposed along the circumference. Fig. 11 illustrates the relationship between the num-
ber of subdomains and computing time. As can be seen, the optimal number of subdomains approximates 60.
However, for an arbitrary problem, it becomes very difficult to predict the optimal partition scheme.

Table 1 lists the comparison among the PBSV-DDM, the Després DDM, and the FETI-H in both memory
requirement and computing time for different radii of PEC circular cylinders. All methods use the identical
partition scheme and mesh density, 20 nodes per wavelength, for each case. The second-order absorbing con-
dition is applied for truncating the infinite region, and there are 20 layers of meshes between the truncated
boundary and the surface of the cylinder. The sparse matrices derived from the PBSV-DDM and the Després
DDM are solved by a multifrontal package UMFPACK [32], which is especially suitable for problems with
multiple right-hand sides. The matrix equations obtained by the FETI-H are solved by the algorithm pre-
sented in [14]. As can be seen in Table 1, the PBSV-DDM is much more efficient than the others.

4.3. Scattering by structures with geometric repetitions

Structures with geometrically repetitive features are widely used in microwave, optics and acoustics
engineering, such as the gratings, the frequency selective surfaces (FSS), and the photonic/electromagnetic
band gap structures (PBG/EBG). Hence, it is very important to investigate the electromagnetic properties
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Fig. 11. Relationship between the number of subdomains and computing time for a PEC circular cylinder having a radius of 100k.



Table 1
The comparison among the PBSV-DDM, the Després DDM, and the FETI-H in both memory requirement (MB) and computing time (s)

Radius (k) Subdomains PBSV-DDM Després DDM FETI-H

Memory CPU time Memory CPU time Memory CPU time

1 2 0.265 0.377 0.288 1.060 0.289 0.203
2 4 0.266 0.769 0.309 2.782 0.310 0.512
4 6 0.353 1.032 0.440 4.275 0.442 1.006
8 10 0.427 1.435 0.597 6.410 0.601 1.557

16 12 0.711 2.352 1.049 12.585 1.053 3.790
32 24 0.714 2.739 1.391 18.534 1.399 6.021
64 40 0.861 4.361 2.214 34.592 2.227 11.483

128 80 0.874 7.133 3.580 68.308 3.618 19.726
256 128 1.101 11.764 6.512 128.841 6.555 23.958
512 192 1.475 18.922 12.294 265.883 12.371 40.727

1024 320 1.798 30.808 23.435 554.335 23.552 83.260
2048 480 2.415 40.973 45.684 1260.792 45.860 199.471
4096 960 2.568 88.120 89.107 2751.119 89.443 285.803
8192 1280 3.801 150.715 176.857 4882.316 177.305 631.226

16,384 2560 4.211 271.326 350.323 9132.286 351.217 1583.927
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of structures with geometric repetitions. Generally, most research assume the structure is periodic, and use
Floquet’s theorem to confine the computational domain on a single period. However, in practical appli-
cations, all these structures have finite sizes, though they may be very large. With traditional numerical
method, even some fast algorithms, the analysis of electrically large problems with geometric repetitions
always presents a formidable challenge due to its prohibitive demand for computer resources. Therefore,
it is desired to develop more efficient algorithms to analyze the problems fast and accurately. Our pro-
posed method, the PBSV-DDM, is one of the most promising methods for the problems.

Consider the electromagnetic scattering problem of a grooved lossy dielectric cylinder, as depicted in
Fig. 12. The cylinder consists of 100 square grooves which are equally spaced. The dimension of each groove
is 1k · 1k. Each cell is 2k wide and 2k deep. Hence, the cylinder has a size of 201k · 2k. The relative permit-
tivity of the cylinder is er = 3 � j and the relative permeability is lr = 1. The truncated boundary is placed 1k
away from the cylinder. The mesh size is k/30. We decompose the whole computational domain into 101 sub-
domains, as illustrated in Fig. 12. It is clear that all subdomains are identical in both geometry and mesh
topology except the first and the last subdomain, and thus the PBSV in the subdomains 2–100 are also iden-
tical. Therefore, only the PBSV of subdomain 1, 2 and 101 are required to be computed, though there are 101
subdomains in this problem. Undoubtedly, the computational efficiency is improved dramatically. The bistatic
RCS and the field distribution computed by the PBSV-DDM under the normal incidence plane wave are
shown in Figs. 13 and 14, respectively. The edge effect can clearly be observed in Fig. 14. The CPU time
for the Ez polarization case is 131.7 s, and for the Hz polarization case is 152.0 s.
1 2 3 101

truncated boundary

2

in
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rf
ac

e

Fig. 12. Illustration of the grooved dielectric cylinder.
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Fig. 13. Bistatic RCS of the grooved lossy dielectric cylinder shown in Fig. 12.
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Fig. 14. Field distribution of the grooved lossy dielectric cylinder shown in Fig. 12.

X. An, Z.-Q. Lü / Journal of Computational Physics 219 (2006) 930–942 941
5. Conclusion

In this paper, an efficient algorithm PBSV-DDM was developed for solving electromagnetic scattering
problems of 2-D electrically large objects. The method can be viewed as a combination of the Després trans-
mission condition and MOM, and the key is to expand the excitation vector on the interface with basis func-
tions. Because of its ‘‘divide and conquer’’ technique, the PBSV-DDM is very appealing for solving electrically
large problems and finite periodic structures. As demonstrated in the presented examples, the PBSV-DDM can
greatly reduce the storage requirement and computing time in contrast to the traditional methods. More
importantly, the method can be implemented in parallel on both sequential and parallel computational plat-
form. However, it should be noted that the computational efficiency could be influenced by the partition
scheme, and there might be an optimal partition scheme for a given problem, though it can hardly be predicted
exactly. Extension of the proposed method to three-dimensional problems is left for further study.
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